IMPERIAL

EPSRC project: Urban environmental simulation in a high spatial resolution

Fangxin Fang, Linfeng Li, Jie Zheng, Juydonyang Zhou

Complex physical processes

In Atmosphere and Urban Environments

Challenges and solutions for urban planning in landconstrained sustainable cities

- > Optimal ratio the areas of green-blue (G-B) infrastructures and buildings
- Incorporation of trees and greener roofs and walls
- Materials for buildings (low carbon emissions, cooling in Summer and heating isolation in Winter)
- Efficient energy use, and natural ventilation
- Advanced traffic and transportation monitoring and management systems for optimizing flow in densely populated areas
- > Incorporate trees (types) along roadsides and medians for cooling and carbon absorption.
- Interaction of **health**, **economics**, **society**, and **environment** a significant role in designing and managing a greener built environment, especially within limited spaces.
- > Engagement of policy-maker, stakeholders, urban planers
- Use IoT, AI, and data analytics to monitor and optimize energy and traffic systems, thus reducing pollutant and carbon emissions

Digital tools for Urban Environment Management: Questions to be addressed

- How do anthropogenic carbon emissions affect local urban and global climate change?
- Which optimal GI-BI, buildings, transportation, and sustainable city designs provide maximum mitigation of carbon emissions & climate change?
- What is the trade-off between carbon reduction, energy use and economics?
- ➤ How can detailed multi-scale models provide efficient and accurate prediction of carbon emissions and their impact on climate change?
- What are the feedbacks of the urban carbon contribution to global climate? (Assess tge improvement of global climate after carbon reduction via optimal management of infrastructures)

Physical image "As Is"

Hybrid data generation approach

- Collecting data from sensors (e.g. drones, mobiles) and satellites;
- Physical modelling solutions

Hourly/daily physical nowcast/forecast

- Traffic emission spatial map
- Carbon/pollutant spatial map
- People map linked to mobiles people trace app
- Energy use/distribution map
- Extreme weather forecast (flooding, hurricane)

Digital Twin (IoT)

Internet of things

Virtual image "To Be"

Al-enabling decision support system

- Autonomous carbon/pollutant monitoring and control
- Optimal traffic flow system
- Building environment control system (indoor and outdoor)
- Green and Blue infrastructures
- Efficient energy system
- Assessment of socioeconomic & health impact

Multiscale physical simulations (J. Zheng)

Surface temperature in a London neighbourhood

PALM is a large-eddy simulation model for atmospheric and environmental research. Here it is used for investigate the impact of green infrastructures on local climate and environment. Including: Radiative transfer model, Land surface model, Urban surface model, Plant canopy model, Prognostic equation for water vapour, Periodic lateral boundary conditions with the clear-sky radiation scheme

CO₂ emission grid map for London (L. Li) High spatial resolution (10m by 10m)

- Based on LAEI^[1] inventory (1km by 1km), further disaggregate activity data at **high resolution** 10m by 10m.
- Domestic gas emission: distribute using EPC records
- Non-domestic gas emission: using non-domestic EPC and DEC records

Non-domestic gas consumption emission [log(kgCO₂/yr)]

Domestic gas consumption emission [log(kgCO₂/yr)]

Major road traffic emission [$log(kgCO_2/yr)$]

Global patterns and hotspots of CO₂ emissions and concentrations (J. Zhou)

Anthropogenic emission rate [kg m⁻² s⁻¹]

Biomass burning emission rate [kg m⁻² s⁻¹]

Surface CO₂ concentration [kg CO₂ per kg air]

Internal collaboration

ESE;

Environmental research group;

Centre for environmental policy;

Civil and

Environmental Engineering;

Physics Atmosphere;

Data Science Engineering;

|-X;

Grantham institute;

ICT

Project Website

Thanks!

Dr Fangxin FangSenior Research
Fellow