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Introduction

• Air pollution is a growing concern with
many negative impact on public health
and the environment.
• Identifying the sources of pollution can

help address air quality issues and inform
policies and regulations for reducing
harmful emissions.
• We propose a novel hierarchical

framework for urban air pollution source
identification, leveraging deep learning
(DL) within an efficient Bayesian inference
framework.
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Bayesian Inference

• Baye’s rule
𝜋(𝑀|𝐷) ∝ 𝜋(𝑀)𝜋(𝐷|𝑀)

Posterior probability ∝ prior probability × likelihood 
probability

• Advantages:
• Incorporating prior knowledge
• Adapting to new information
• Uncertainty quantification

• Requirement: stochastic sampling tools à Monte Carlo 
Markov Chain (MCMC) family
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Metropolis Hastings-MCMC Algorithm

1

Sample a 
candidate point 
from the 
posterior 
distribution.

2

Run the forward 
model.

3

Compute the 
model-data 
discrepancy, and 
the likelihood.

4

Accept or reject 
to build the 
corresponding 
chain.
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MH-MCMC in Air Pollution Source Identification

• Longitude (x)
• Latitude (y)
• Emission Rate (q)
• Emission Duration (d)

Inverting for 4 parameters (M)

Uniform prior distribution 𝜋(𝑀)
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MH-MCMC in Air Pollution Source Identification

• Available environmental monitoring 
techniques:
• Sensors
• Satellite images
• Remote sensing techniques

• Two forms of pollution observations:
• Discrete point-wise concentration 

values
• Concentration fields
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The Lagrangian Transport Model

• The Graz Lagrangian model GRAL:
• Microscale wind field computations.
• Lagrangian particle tracking.

• Navier-Stokes equation along with the k-ϵ 
turbulence closure model.
• Inputs: topography, land use, buildings, 

meteorological conditions and emission 
sources.
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Modeling the Likelihood
T1 T2

modeled
observed 

• Each concentration field is considered as a 
distribution that could be displaced.

• The Wasserstein distance is the cost of displacing 
the predicted model output to the observation.

• This cost physically represents the required work 
as the product of the mass to be moved and the 
distance to be traveled.

𝑊!(𝑓", 𝑓#) = min
$∗∈ 𝒯((",(#)

ℒ 𝑢, 𝑣 𝑓"(𝑢)

• 𝑓" and 𝑓#: observed and modeled 
concentration fields, respectively.

• 𝒯: set of regular bijections mapping 
𝑓" to 𝑓#.

• ℒ 𝑢, 𝑣 : Euclidean distance from point 
u to point 𝑣 = 𝑇 𝑢 .

Exponential likelihood

𝜋(
𝐷
|𝑀
)

𝑊!(𝑓", 𝑓#)



Case Study: KAUST Synthetic Scenario
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Results and Challenges
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• Excellent solutions are obtained with the global W2 dissimilarity 
metric.

• Challenge:
• Each chain generation with 10,000 samples requires 143 hours.
• Numerous runs of the expensive physical dispersion model.
• High Cost of the W2 Distance: Half of the computational time is spent to 

calculate the W2 distance for each sample.



Solution: Use DL
• The acceleration of tradition Bayesian 

inference by training a NN to predict air 
pollutant concentrations based on given 
flow conditions and emission 
characteristics.
• Coupling this emulator with a NN 

approximation of the likelihood 
distribution to synergistically accelerate 
computations.
• Full operation on GPUs, leveraging parallel 

computing architectures to expedite 
computational costs.
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The Lagrangian Transport Surrogate Model: 
Learning Task

12

Meteorological 
Conditions

Surface 
Features

Emission 
Characteristics

Concentration 
Distributions
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The Lagrangian Transport Surrogate Model: 
Architecture
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The Lagrangian Transport Surrogate Model: 
Training
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• Prediction in time at each time step.
• Cumulative error growth for each time step.
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The Lagrangian Transport Surrogate Model: 
Training
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Examples of Predictions
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Evaluation Results:
- RRMSE = 3.6% 
- MBE = 0.015
- IOA = 98%
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Examples of Predictions
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Evaluation Results:
- RRMSE = 3.6% 
- MBE = 0.015
- IOA = 98%
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Siamese Network for W2 Approximation
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• 𝑥!, 𝑥": two input fields.
• 𝛾: encoder.
• 𝜙: decoder.
• y: the corresponding W2 

distance.
• 𝐿#$%&'(,! and 𝐿#$%&'(.": 

reconstruction loss terms of 
each input as computed by 
the KL divergence.

• 𝐿$+,$-: L2 norm of the 
difference between the 
Euclidean distance of the 
embedded features and y.

Normalized L2 error = 4.35%
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The Dual Hierarchy
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More samples!

Computational Time
- Conventional: 6days!
- AI-Hierechical: 20minutes
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Computational Time
- Conventional: 60days!
- AI-Hierechical: 3.34hours

High Computational Savings
Better Convergence
Higher Confidence



Conclusion

• Successfully developed a NN surrogate model for 
Lagrangian dispersion, and a NN approximation for 
the likelihood estimation.

• Bayesian inference framework employs the dual NNs 
to infer the emission parameters in an urban 
environment.

• Suggested solutions results in appreciable reduction 
in computational requirements with minimal loss in 
performance.

• Our approach can accurately identify sources of 
air pollution, thus help in responding to harmful 
emissions and improve overall air quality.
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