Scalable, adaptive, and explainable scientific machine learning with applications to computational fluid dynamics

Romit Maulik, Assistant Professor, The Pennsylvania State University, Faculty Affiliate, Argonne National Laboratory. Email: rmaulik@psu.edu

Machine learning and benchmarks

airplane	the last	-	X	*	-	2	-1		-
automobile	-	1	1	-		-	3	-	*
bird	N.C	5		1	4	17	1		1
cat		5	20		1	2	Ż,	No.	-
deer	No. Y	÷ 🖌	1	17	Y	Ŷ	R.	-	5
dog	30.6	10	1	1	2		1	1	Te-
frog	2		S-	1	٢		3		3
horse			7	P	TAB	18	to	6	N
ship		1 cm	-		-	J	P	-	-
truck	A.		se.				1	220	C.L.

Machine learning algorithms have been revolutionized through community-based benchmarks and annual competitions: PASCAL-VOC challenge, ImageNet, etc.

З z \leq Ċ

Typical benchmarks for data-driven modeling

PDE	N_d	Time	N_s
advection	1	yes	1024
Burgers'	1	yes	1024
diffusion-reaction	1	yes	1024
diffusion-reaction	2	yes	128×128
diffusion-sorption	1	yes	1024
compressible Navier-Stokes	1	yes	1024
compressible Navier-Stokes	2	yes	512×512
compressible Navier-Stokes	3	yes	$128\times128\times128$
incompressible Navier-Stokes	2	yes	256×256
Darcy flow	2	no	128×128
shallow-water	2	yes	128×128

Pros: Easy to share data, easy to interface with ML ecosystem (structured grids), easy to reproduce. Cons: There is a tendency to develop specialized algorithms that do not "scale" Image and table courtesy: PDEBench, NeurIPS, 2022

Realistic scientific computing

Saumil Patel and Nek5000 team, ANL

UMReactingFlow solver, APCL group, University of Michigan (PI: Venkat Raman)" and this paper: "Bielawski, R., Barwey, S., Prakash, S. and Raman, V., *Computers & Fluids (Accepted)*

A prototypical CFD problem

We propose

A scalable and interpretable deep learning paradigm for unstructured computational fluid dynamics datasets

Geometric deep learning for unstructured data

Mesh-based graph connectivity

Parallels between function approximation on CFD meshes and message passing in graph neural networks. For a finite-volume code - the nodes are cell-center values, the edges are fluxes and some notion of distance.

Geometric deep learning for unstructured data

Autoencoders - a primer

A graph neural network autoencoder

Increasing number of nodes

Scalability via multiscale message passing

Gao, Hongyang, and Shuiwang Ji. "Graph u-nets." ICML, 2019.

Scalability via multiscale message passing

- Voxel-based clustering (Coarse mesh is still unstructured)
- Step 1: prescribe a target length scale
- Step 2: create a structured mesh at this target length scale
- Step 3: identify node-cell ownership
- Step 4: coarsen
 - For nodes: coarse node comes from mean of fine nodes within cell
 - For edges: coarse edge comes from mean of fine edges intersecting cells

Adaptive selection of length scales for latent space possible - "Length scale discovery"?

Scalability via multiscale message passing Fine Graph

For node interpolation: can use first-order (piece-wise constant, cheaper), or second-order (KNN-based, more expensive)

Piece-wise

Scalability via multiscale message passing

The multiscale message passing layer addresses the "flatlining" of the standard graph neural network for a **compression application.**

Interpretability via adaptive subsampling

Node downsampling occurs using learnable projection vector. **Top-K projection.**

Interpretability via adaptive subsampling

Interpretability via adaptive subsampling

In conclusion

We have thus far:

- 1. An ability to deal with advection dominated datasets and realistic benchmarks.
- 2. An ability to deal with large unstructured meshes.
- 3. An ability to visualize and interpret what happens within a neural network.

Barwey S, Shankar V, Viswanathan V, **RM**. Multiscale graph neural network autoencoders for interpretable scientific machine learning. Journal of Computational Physics. 2023 Dec 15;495:112537.

A larger version of this talk

- 1. Builds an interpretable surrogate model for **forecasting** on this dataset.
- 2. Introduces a-posteriori indicator of spatial error.