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Machine learning and benchmarks

Machine learning algorithms have been 

revolutionized through community-based 
benchmarks and annual competitions: 
PASCAL-VOC challenge, ImageNet, etc.
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Typical benchmarks for data-drivenmodeling

Pros: Easy to share data, easy to interface with ML 

ecosystem (structured grids), easy to reproduce. 

Cons: There is a tendency to develop specialized 

algorithms that do not “scale”

Image and table courtesy: PDEBench, NeurIPS, 2022
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Saumil Patel and Nek5000 team, ANL UMReactingFlow solver, APCL group, University of Michigan (PI: Venkat Raman)" and 

this paper: "Bielawski, R., Barwey, S., Prakash, S. and Raman, V., Computers & Fluids 

(Accepted)

Realistic scientific computing
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A prototypical CFD problem

Flow over a backward facing step:

- Experimental data available.

- Mesh available (NASA LARC)

- Prototypical for several

applications.
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Wepropose
A scalable and interpretable deep learning paradigm for
unstructured computational fluid dynamics datasets
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Geometric deep learning for unstructured data
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Parallels between function approximation on CFD 

meshes and message passing in graph neural 

networks. For a finite-volume code - the nodes are 

cell-center values, the edges are fluxes and some 

notion of distance.
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The SciML community has started exploring GNNs for realistic CFD problems:

- Belbute-Peres et al., ICLR, 2020.

- Li and Farimani., Computers & Graphics 103 (2022): 201-211.

- Peng, Jiang-Zhou, et al., Physics of Fluids 35.8 (2023).

Challenges with “vanilla” usage of GNNs:

- Graph neural networks are typically “diffusion-driven” and cannot scale to CFD-esque 

problems.

- GNNs are also black-box and not-easily interpreted.

Geometric deep learning for unstructured data



Autoencoders - a primer

Autoencoders have been used to efficiently compress high-

dimensional flow-fields and build reduced-order models. Criticism: 

The compression is not easily interpretable. Image courtesy -

Taira Lab, UCLA.
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SciML models frequently use compression to 

accelerate function approximation and inference. 

We will leverage autoencoders to do the same.



A graph neural network autoencoder
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Scalability via multiscale message passing

Gao, Hongyang, and Shuiwang Ji. "Graph u-nets." ICML, 2019.
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Scalability via multiscale message passing
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Adaptive selection of length scales for latent space possible -

“Length scale discovery”?



Scalability via multiscale message passing
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The multiscale message passing layer addresses 

the “flatlining” of the standard graph neural

network for a compression application.

Scalability via multiscale message passing
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Node downsampling 

occurs using learnable 

projection vector. Top-

K projection.

Input Node Features Sub-sampled nodes

Interpretability via adaptive subsampling
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During training - the GNN learns what 

nodes must be retained (ergo “important”)

to promote accuracy!

Interpretability via adaptive subsampling
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Input Graph

(~15k nodes)

16x reduction in nodes

4x 4x

Latent space

Interpretability via adaptive subsampling

Latent spaceHidden layer 1
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In progress: Building a “Lagrangian”

reduced-order model in the latent space.



In conclusion

We have thus far:

1. An ability to deal with advection dominated datasets and realistic 

benchmarks.

2. An ability to deal with large unstructured meshes.

3. An ability to visualize and interpret what happens within a neural network.

A larger version of this talk

1. Builds an interpretable surrogate model for forecasting on this dataset.

2. Introduces a-posteriori indicator of spatial error.

Barwey S, Shankar V, Viswanathan V, RM. Multiscale graph neural network autoencoders for interpretable

scientific machine learning. Journal of Computational Physics. 2023 Dec 15;495:112537.
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